Building Logical Plans
_The source code discussed in this chapter can be found in the dataframe
module of the KQuery project.
_
Building Logical Plans The Hard Way
Now that we have defined classes for a subset of logical plans, we can combine them programmatically.
Here is some verbose code for building a plan for the query SELECT * FROM employee WHERE state = 'CO'
against a CSV file containing the columns id, first_name, last_name, state, job_title, salary
.
// create a plan to represent the data source
val csv = CsvDataSource("employee.csv")
// create a plan to represent the scan of the data source (FROM)
val scan = Scan("employee", csv, listOf())
// create a plan to represent the selection (WHERE)
val filterExpr = Eq(Column("state"), LiteralString("CO"))
val selection = Selection(scan, filterExpr)
// create a plan to represent the projection (SELECT)
val projectionList = listOf(Column("id"),
Column("first_name"),
Column("last_name"),
Column("state"),
Column("salary"))
val plan = Projection(selection, projectionList)
// print the plan
println(format(plan))
This prints the following plan:
Projection: #id, #first_name, #last_name, #state, #salary
Filter: #state = 'CO'
Scan: employee; projection=None
The same code can also be written more concisely like this:
val plan = Projection(
Selection(
Scan("employee", CsvDataSource("employee.csv"), listOf()),
Eq(Column(3), LiteralString("CO"))
),
listOf(Column("id"),
Column("first_name"),
Column("last_name"),
Column("state"),
Column("salary"))
)
println(format(plan))
Although this is more concise, it is also harder to interpret, so it would be nice to have a more elegant way to create logical plans. This is where a DataFrame interface can help.
Building Logical Plans using DataFrames
Implementing a DataFrame style API allows us to build logical query plans in a much more user-friendly way. A DataFrame is just an abstraction around a logical query plan and has methods to perform transformations and actions. It is similar to a fluent-style builder API.
Here is a minimal starting point for a DataFrame interface that allows us to apply projections and selections to an existing DataFrame.
interface DataFrame {
/** Apply a projection */
fun project(expr: List<LogicalExpr>): DataFrame
/** Apply a filter */
fun filter(expr: LogicalExpr): DataFrame
/** Aggregate */
fun aggregate(groupBy: List<LogicalExpr>,
aggregateExpr: List<AggregateExpr>): DataFrame
/** Returns the schema of the data that will be produced by this DataFrame. */
fun schema(): Schema
/** Get the logical plan */
fun logicalPlan() : LogicalPlan
}
Here is the implementation of this interface.
class DataFrameImpl(private val plan: LogicalPlan) : DataFrame {
override fun project(expr: List<LogicalExpr>): DataFrame {
return DataFrameImpl(Projection(plan, expr))
}
override fun filter(expr: LogicalExpr): DataFrame {
return DataFrameImpl(Selection(plan, expr))
}
override fun aggregate(groupBy: List<LogicalExpr>,
aggregateExpr: List<AggregateExpr>): DataFrame {
return DataFrameImpl(Aggregate(plan, groupBy, aggregateExpr))
}
override fun schema(): Schema {
return plan.schema()
}
override fun logicalPlan(): LogicalPlan {
return plan
}
}
Before we can apply a projection or selection, we need a way to create an initial DataFrame that represents an underlying data source. This is usually obtained through an execution context.
Here is a simple starting point for an execution context that we will enhance later.
class ExecutionContext {
fun csv(filename: String): DataFrame {
return DataFrameImpl(Scan(filename, CsvDataSource(filename), listOf()))
}
fun parquet(filename: String): DataFrame {
return DataFrameImpl(Scan(filename, ParquetDataSource(filename), listOf()))
}
}
With this groundwork in place, we can now create a logical query plan using the context and the DataFrame API.
val ctx = ExecutionContext()
val plan = ctx.csv("employee.csv")
.filter(Eq(Column("state"), LiteralString("CO")))
.select(listOf(Column("id"),
Column("first_name"),
Column("last_name"),
Column("state"),
Column("salary")))
This is much cleaner and more intuitive, but we can go a step further and add some convenience methods to make this a little more comprehensible. This is specific to Kotlin, but other languages have similar concepts.
We can create some convenience methods for creating the supported expression objects.
fun col(name: String) = Column(name)
fun lit(value: String) = LiteralString(value)
fun lit(value: Long) = LiteralLong(value)
fun lit(value: Double) = LiteralDouble(value)
We can also define infix operators on the LogicalExpr
interface for building binary expressions.
infix fun LogicalExpr.eq(rhs: LogicalExpr): LogicalExpr { return Eq(this, rhs) }
infix fun LogicalExpr.neq(rhs: LogicalExpr): LogicalExpr { return Neq(this, rhs) }
infix fun LogicalExpr.gt(rhs: LogicalExpr): LogicalExpr { return Gt(this, rhs) }
infix fun LogicalExpr.gteq(rhs: LogicalExpr): LogicalExpr { return GtEq(this, rhs) }
infix fun LogicalExpr.lt(rhs: LogicalExpr): LogicalExpr { return Lt(this, rhs) }
infix fun LogicalExpr.lteq(rhs: LogicalExpr): LogicalExpr { return LtEq(this, rhs) }
With these convenience methods in place, we can now write expressive code to build our logical query plan.
val df = ctx.csv(employeeCsv)
.filter(col("state") eq lit("CO"))
.select(listOf(
col("id"),
col("first_name"),
col("last_name"),
col("salary"),
(col("salary") mult lit(0.1)) alias "bonus"))
.filter(col("bonus") gt lit(1000))
This book is also available for purchase in ePub, MOBI, and PDF format from https://leanpub.com/how-query-engines-work
Copyright © 2020-2023 Andy Grove. All rights reserved.